Cole–Cole equation

The Cole–Cole equation is a relaxation model that is often used to describe dielectric relaxation in polymers.

It is given by the equation

$\varepsilon ^{*}(\omega )=\varepsilon _{\infty }+{\frac {\varepsilon _{s}-\varepsilon _{\infty }}{1+(i\omega \tau )^{1-\alpha }}}}$ where $\varepsilon ^{*}}$ is the complex dielectric constant, $\varepsilon _{s}}$ and $\varepsilon _{\infty }}$ are the "static" and "infinite frequency" dielectric constants, $\omega }$ is the angular frequency and $\tau }$ is a time constant.

The exponent parameter $\alpha }$ , which takes a value between 0 and 1, allows to describe different spectral shapes. When $\alpha =0}$ , the Cole-Cole model reduces to the Debye model. When $\alpha >0}$ , the relaxation is stretched, i.e. it extends over a wider range on a logarithmic $\omega }$ scale than Debye relaxation.

The separation of the complex dielectric constant $\varepsilon (\omega )}$ was reported in the original paper by Cole and Cole as follows:

$\varepsilon '=\varepsilon _{\infty }+(\varepsilon _{s}-\varepsilon _{\infty }){\frac {1+(\omega \tau )^{1-\alpha }\sin \alpha \pi /2}{1+2(\omega \tau )^{1-\alpha }\sin \alpha \pi /2+(\omega \tau )^{2(1-\alpha )}}}}$ $\varepsilon ''={\frac {(\varepsilon _{s}-\varepsilon _{\infty })(\omega \tau )^{1-\alpha }\cos \alpha \pi /2}{1+2(\omega \tau )^{1-\alpha }\sin \alpha \pi /2+(\omega \tau )^{2(1-\alpha )}}}}$ Upon introduction of hyperbolic functions, the above expressions reduce to:

$\varepsilon '=\varepsilon _{\infty }+{\frac {1}{2}}(\varepsilon _{0}-\varepsilon _{\infty })\left[1-{\frac {\sinh((1-\alpha )x)}{\cosh((1-\alpha )x)+\cos \alpha \pi /2}}\right]}$ $\varepsilon ''={\frac {1}{2}}(\varepsilon _{0}-\varepsilon _{\infty }){\frac {\cos \alpha \pi /2}{\cosh((1-\alpha )x)+\sin \alpha \pi /2}}}$ Here $x=\ln(\omega \tau )}$ .

These equations reduce to the Debye expression when $\alpha =0}$ .

Cole–Cole relaxation constitutes a special case of Havriliak–Negami relaxation when the symmetry parameter (β) is equal to 1, that is, when the relaxation peaks are symmetric. Another special case of Havriliak–Negami relaxation (β<1, α=1) is known as Cole–Davidson relaxation. For an abridged and updated review of anomalous dielectric relaxation in disordered systems, see Kalmykov.

References

1. ^ Cole, Kenneth S, Robert H (1941). "Dispersion and Absorption in Dielectrics: I - Alternating Current Characteristics". Journal of Chemical Physics. 9 (4): 341–351. Bibcode:1941JChPh...9..341C. doi:10.1063/1.1750906.

Cole, K.S.; Cole, R.H. (1941). "Dispersion and Absorption in Dielectrics - I Alternating Current Characteristics". J. Chem. Phys. 9 (4): 341–352. Bibcode:1941JChPh...9..341C. doi:10.1063/1.1750906.

Cole, K.S.; Cole, R.H. (1942). "Dispersion and Absorption in Dielectrics - II Direct Current Characteristics". Journal of Chemical Physics. 10 (2): 98–105. Bibcode:1942JChPh..10...98C. doi:10.1063/1.1723677.

Kalmykov, Y.P.; Coffey, W.T.; Crothers, D.S.F.; Titov, S.V. (2004). "Microscopic Models for Dielectric Relaxation in Disordered Systems". Physical Review E. 70 (4): 041103. Bibcode:2004PhRvE..70d1103K. doi:10.1103/PhysRevE.70.041103. PMID 15600393.