Hexagon
Regular hexagon  

Type  Regular polygon 
Edges and vertices  6 
Schläfli symbol  {6}, t{3} 
Coxeter–Dynkin diagrams  
Symmetry group  Dihedral (D_{6}), order 2×6 
Internal angle (degrees)  120° 
Properties  Convex, cyclic, equilateral, isogonal, isotoxal 
In geometry, a hexagon (from Greek ἕξ, hex, meaning "six", and γωνία, gonía, meaning "corner, angle") is a sixsided polygon or 6gon. The total of the internal angles of any simple (nonselfintersecting) hexagon is 720°.
Regular hexagon
A regular hexagon has Schläfli symbol {6}^{[1]} and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges.
A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle).
The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals times the apothem (radius of the inscribed circle). All internal angles are 120 degrees. A regular hexagon has six rotational symmetries (rotational symmetry of order six) and six reflection symmetries (six lines of symmetry), making up the dihedral group D_{6}. The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.
Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials. The Voronoi diagram of a regular triangular lattice is the honeycomb tessellation of hexagons. It is not usually considered a triambus, although it is equilateral.
Parameters
The maximal diameter (which corresponds to the long diagonal of the hexagon), D, is twice the maximal radius or circumradius, R, which equals the side length, t. The minimal diameter or the diameter of the inscribed circle (separation of parallel sides, flattoflat distance, short diagonal or height when resting on a flat base), d, is twice the minimal radius or inradius, r. The maxima and minima are related by the same factor:
 and, similarly,
The area of a regular hexagon
For any regular polygon, the area can also be expressed in terms of the apothem a and the perimeter p. For the regular hexagon these are given by a = r, and p, so
The regular hexagon fills the fraction of its circumscribed circle.
If a regular hexagon has successive vertices A, B, C, D, E, F and if P is any point on the circumcircle between B and C, then PE + PF = PA + PB + PC + PD.
It follows from the ratio of circumradius to inradius that the heighttowidth ratio of a regular hexagon is 1:1.1547005; that is, a hexagon with a long diagonal of 1.0000000 will have a distance of 0.8660254 between parallel sides.
Point in plane
For an arbitrary point in the plane of a regular hexagon with circumradius , whose distances to the centroid of the regular hexagon and its six vertices are and respectively, we have ^{[2]}
If are the distances from the vertices of a regular hexagon to any point on its circumscircle, then ^{[2]}
Symmetry
Example hexagons by symmetry  


The regular hexagon has Dih_{6} symmetry, order 12. There are three dihedral subgroups: Dih_{3}, Dih_{2}, and Dih_{1}, and four cyclic subgroups: Z_{6}, Z_{3}, Z_{2}, and Z_{1}.
These symmetries express nine distinct symmetries of a regular hexagon. John Conway labels these by a letter and group order.^{[3]} r12 is full symmetry, and a1 is no symmetry. p6, an isogonal hexagon constructed by three mirrors can alternate long and short edges, and d6, an isotoxal hexagon constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular hexagon. The i4 forms are regular hexagons flattened or stretched along one symmetry direction. It can be seen as an elongated rhombus, while d2 and p2 can be seen as horizontally and vertically elongated kites. g2 hexagons, with opposite sides parallel are also called hexagonal parallelogons.
Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g6 subgroup has no degrees of freedom but can seen as directed edges.
Hexagons of symmetry g2, i4, and r12, as parallelogons can tessellate the Euclidean plane by translation. Other hexagon shapes can tile the plane with different orientations.
p6m (*632)  cmm (2*22)  p2 (2222)  p31m (3*3)  pmg (22*)  pg (××)  

r12 
i4 
g2 
d2 
d2 
p2 
a1 
Dih_{6}  Dih_{2}  Z_{2}  Dih_{1}  Z_{1} 
A2 and G2 groups
The 6 roots of the simple Lie group A2, represented by a Dynkin diagram , are in a regular hexagonal pattern. The two simple roots have a 120° angle between them.
The 12 roots of the Exceptional Lie group G2, represented by a Dynkin diagram are also in a hexagonal pattern. The two simple roots of two lengths have a 150° angle between them.
Dissection
6cube projection  12 rhomb dissection  

Coxeter states that every zonogon (a 2mgon whose opposite sides are parallel and of equal length) can be dissected into m(m1)/2 parallelograms.^{[4]} In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. This decomposition of a regular hexagon is based on a Petrie polygon projection of a cube, with 3 of 6 square faces. Other parallelogons and projective directions of the cube are dissected within rectangular cuboids.
Dissection of hexagons into three rhombs and parallelograms  

2D  Rhombs  Parallelograms  
Regular {6}  Hexagonal parallelogons  
3D  Square faces  Rectangular faces  
Cube  Rectangular cuboid 
Related polygons and tilings
A regular hexagon has Schläfli symbol {6}. A regular hexagon is a part of the regular hexagonal tiling, {6,3}, with three hexagonal faces around each vertex.
A regular hexagon can also be created as a truncated equilateral triangle, with Schläfli symbol t{3}. Seen with two types (colors) of edges, this form only has D_{3} symmetry.
A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a center point. This pattern repeats within the regular triangular tiling.
A regular hexagon can be extended into a regular dodecagon by adding alternating squares and equilateral triangles around it. This pattern repeats within the rhombitrihexagonal tiling.
Regular {6} 
Truncated t{3} = {6} 
Hypertruncated triangles  Stellated Star figure 2{3} 
Truncated t{6} = {12} 
Alternated h{6} = {3} 

Crossed hexagon 
A concave hexagon  A selfintersecting hexagon (star polygon)  Extended Central {6} in {12} 
A skew hexagon, within cube  Dissected {6}  projection octahedron 
Complete graph 

Selfcrossing hexagons
There are six selfcrossing hexagons with the vertex arrangement of the regular hexagon:
Dih_{2}  Dih_{1}  Dih_{3}  

Figureeight 
Centerflip 
Unicursal 
Fishtail 
Doubletail 
Tripletail 
Hexagonal structures
From bees' honeycombs to the Giant's Causeway, hexagonal patterns are prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly be if a large area is to be filled with the fewest hexagons. This means that honeycombs require less wax to construct and gain much strength under compression.
Irregular hexagons with parallel opposite edges are called parallelogons and can also tile the plane by translation. In three dimensions, hexagonal prisms with parallel opposite faces are called parallelohedrons and these can tessellate 3space by translation.
Form  Hexagonal tiling  Hexagonal prismatic honeycomb 

Regular  
Parallelogonal 
Tesselations by hexagons
In addition to the regular hexagon, which determines a unique tessellation of the plane, any irregular hexagon which satisfies the Conway criterion will tile the plane.
Hexagon inscribed in a conic section
Pascal's theorem (also known as the "Hexagrammum Mysticum Theorem") states that if an arbitrary hexagon is inscribed in any conic section, and pairs of opposite sides are extended until they meet, the three intersection points will lie on a straight line, the "Pascal line" of that configuration.
Cyclic hexagon
The Lemoine hexagon is a cyclic hexagon (one inscribed in a circle) with vertices given by the six intersections of the edges of a triangle and the three lines that are parallel to the edges that pass through its symmedian point.
If the successive sides of a cyclic hexagon are a, b, c, d, e, f, then the three main diagonals intersect in a single point if and only if ace = bdf.^{[5]}
If, for each side of a cyclic hexagon, the adjacent sides are extended to their intersection, forming a triangle exterior to the given side, then the segments connecting the circumcenters of opposite triangles are concurrent.^{[6]}
If a hexagon has vertices on the circumcircle of an acute triangle at the six points (including three triangle vertices) where the extended altitudes of the triangle meet the circumcircle, then the area of the hexagon is twice the area of the triangle.^{[7]}^{: p. 179 }
Hexagon tangential to a conic section
Let ABCDEF be a hexagon formed by six tangent lines of a conic section. Then Brianchon's theorem states that the three main diagonals AD, BE, and CF intersect at a single point.
In a hexagon that is tangential to a circle and that has consecutive sides a, b, c, d, e, and f,^{[8]}
Equilateral triangles on the sides of an arbitrary hexagon
If an equilateral triangle is constructed externally on each side of any hexagon, then the midpoints of the segments connecting the centroids of opposite triangles form another equilateral triangle.^{[9]}^{: Thm. 1 }
Skew hexagon
A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such an hexagon is not generally defined. A skew zigzag hexagon has vertices alternating between two parallel planes.
A regular skew hexagon is vertextransitive with equal edge lengths. In three dimensions it will be a zigzag skew hexagon and can be seen in the vertices and side edges of a triangular antiprism with the same D_{3d}, [2^{+},6] symmetry, order 12.
The cube and octahedron (same as triangular antiprism) have regular skew hexagons as petrie polygons.
Cube 
Octahedron 
Petrie polygons
The regular skew hexagon is the Petrie polygon for these higher dimensional regular, uniform and dual polyhedra and polytopes, shown in these skew orthogonal projections:
Convex equilateral hexagon
A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists^{[10]}^{: p.184, #286.3 } a principal diagonal d_{1} such that
and a principal diagonal d_{2} such that
Polyhedra with hexagons
There is no Platonic solid made of only regular hexagons, because the hexagons tessellate, not allowing the result to "fold up". The Archimedean solids with some hexagonal faces are the truncated tetrahedron, truncated octahedron, truncated icosahedron (of soccer ball and fullerene fame), truncated cuboctahedron and the truncated icosidodecahedron. These hexagons can be considered truncated triangles, with Coxeter diagrams of the form and .
Hexagons in Archimedean solids  

Tetrahedral  Octahedral  Icosahedral  
truncated tetrahedron 
truncated octahedron 
truncated cuboctahedron 
truncated icosahedron 
truncated icosidodecahedron 
There are other symmetry polyhedra with stretched or flattened hexagons, like these Goldberg polyhedron G(2,0):
Hexagons in Goldberg polyhedra  

Tetrahedral  Octahedral  Icosahedral  
Chamfered tetrahedron 
Chamfered cube 
Chamfered dodecahedron 
There are also 9 Johnson solids with regular hexagons:
Prismoids with hexagons  

Hexagonal prism 
Hexagonal antiprism 
Hexagonal pyramid 
Tilings with regular hexagons  

Regular  1uniform  
{6,3} 
r{6,3} 
rr{6,3} 
tr{6,3} 

2uniform tilings  
Gallery of natural and artificial hexagons
See also
 24cell: a fourdimensional figure which, like the hexagon, has orthoplex facets, is selfdual and tessellates Euclidean space
 Hexagonal crystal system
 Hexagonal number
 Hexagonal tiling: a regular tiling of hexagons in a plane
 Hexagram: sixsided star within a regular hexagon
 Unicursal hexagram: single path, sixsided star, within a hexagon
 Honeycomb conjecture
 Havannah: abstract board game played on a sixsided hexagonal grid
References
 ^ Wenninger, Magnus J. (1974), Polyhedron Models, Cambridge University Press, p. 9, ISBN 9780521098595, archived from the original on 20160102, retrieved 20151106.
 ^ ^{a} ^{b} Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications. 11: 335–355. arXiv:2010.12340.
 ^ John H. Conway, Heidi Burgiel, Chaim GoodmanStrauss, (2008) The Symmetries of Things, ISBN 9781568812205 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275278)
 ^ Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
 ^ Cartensen, Jens, "About hexagons", Mathematical Spectrum 33(2) (2000–2001), 37–40.
 ^ Dergiades, Nikolaos (2014). "Dao's theorem on six circumcenters associated with a cyclic hexagon". Forum Geometricorum. 14: 243–246. Archived from the original on 20141205. Retrieved 20141117.
 ^ Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
 ^ Gutierrez, Antonio, "Hexagon, Inscribed Circle, Tangent, Semiperimeter", [1] Archived 20120511 at the Wayback Machine, Accessed 20120417.
 ^ Dao Thanh Oai (2015). "Equilateral triangles and Kiepert perspectors in complex numbers". Forum Geometricorum. 15: 105–114. Archived from the original on 20150705. Retrieved 20150412.
 ^ Inequalities proposed in "Crux Mathematicorum", [2] Archived 20170830 at the Wayback Machine.
External links
 Definition and properties of a hexagon with interactive animation and construction with compass and straightedge.
 An Introduction to Hexagonal Geometry on Hexnet a website devoted to hexagon mathematics.
 Cassini Images Bizarre Hexagon on Saturn
 Saturn's Strange Hexagon
 A hexagonal feature around Saturn's North Pole
 "Bizarre Hexagon Spotted on Saturn" – from Space.com (27 March 2007)
Other Languages
 Afrikaans
 العربية
 অসমীয়া
 Asturianu
 Башҡортса
 Bikol Central
 Български
 Català
 Čeština
 ChiShona
 Cymraeg
 Dansk
 Deutsch
 Eesti
 Ελληνικά
 Emiliàn e rumagnòl
 Español
 Esperanto
 Euskara
 فارسی
 Français
 Gaeilge
 Gaelg
 Galego
 客家語/Hakkângî
 한국어
 Հայերեն
 हिन्दी
 Hrvatski
 Ido
 Bahasa Indonesia
 Italiano
 עברית
 Jawa
 Kreyòl ayisyen
 Latina
 Latviešu
 Lëtzebuergesch
 Lietuvių
 Lingua Franca Nova
 Lombard
 Magyar
 Македонски
 മലയാളം
 Bahasa Melayu
 Монгол
 Nederlands
 日本語
 Nordfriisk
 Norsk bokmål
 Norsk nynorsk
 Nouormand
 ଓଡ଼ିଆ
 پښتو
 Polski
 Português
 Română
 Русский
 Sicilianu
 Simple English
 Slovenčina
 Slovenščina
 کوردی
 Српски / srpski
 Srpskohrvatski / српскохрватски
 Sunda
 Suomi
 Svenska
 Tagalog
 தமிழ்
 తెలుగు
 ไทย
 Türkçe
 Українська
 Tiếng Việt
 Winaray
 吴语
 ייִדיש
 粵語
 中文
Copyright
 This page is based on the Wikipedia article Hexagon; it is used under the Creative Commons AttributionShareAlike 3.0 Unported License (CCBYSA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CCBYSA.