# Siemens (unit)

Siemens | |
---|---|

Unit system | SI derived unit |

Unit of | Electric conductance |

Symbol | S (= Ω^{−1}) |

Named after | Ernst Werner von Siemens |

In SI base units: | kg^{−1}⋅m^{−2}⋅s^{3}⋅A^{2} |

The **siemens** (symbol: S) is the derived unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is redundantly equal to the reciprocal of one ohm, and is also referred to as the *mho*. The 14th General Conference on Weights and Measures approved the addition of the siemens as a derived unit in 1971.

The unit is named after Ernst Werner von Siemens. In English, the same form *siemens* is used both for the singular and plural.^{[1]}

### Definition

For a conducting element, electrical resistance *R* and electrical conductance *G* are defined as

where *I* is the electric current through the object and *V* is the voltage (electrical potential difference) across the object.

The unit **siemens** for the conductance *G* is defined by

where Ω is the ohm, A is the ampere, and V is the volt.

For a device with a conductance of one siemens, the electric current through the device will increase by one ampere for every increase of one volt of electric potential difference across the device.

The conductance of a resistor with a resistance of five ohms, for example, is (5 Ω)^{−1}, which is equal to 200 mS.

### Mho

A name that is used as an alternative to the *siemens* is the * mho* /moʊ/, the reciprocal of one ohm. It is derived from spelling

*ohm*backwards and is written as an upside-down capital Greek letter omega: , Unicode symbol U+2127 (℧). According to Maver

^{[2]}the term

*mho*was suggested by Sir William Thomson (Lord Kelvin). The

*ohm*officially replaced the old "

*siemens*unit", which was a unit of

*resistance*, at an international conference in 1881.

^{[3]}

NIST's *Guide for the Use of the International System of Units (SI)* refers to the mho as an "unaccepted special name for an SI unit", and indicates that it should be strictly avoided.^{[4]}

The SI term *siemens* is used universally in science and often in electrical applications, while *mho* is still used in some electronic contexts. The inverted capital omega symbol, while not an official SI abbreviation, is less likely to be confused with a variable than the letter S when doing algebraic calculations by hand, where the usual typographical distinctions (such as italic for variables and Roman for unit names) are difficult to maintain. Likewise, it is difficult to distinguish the symbol *S* from the lower-case *s* where *second* is meant, potentially causing confusion.^{[5]} So, for example, a pentode’s transconductance of 2.2 mS might alternatively be written as 2.2 or 2200 (most common in the 1930s) or 2.2 mA/V. A handwritten "S" can also be misread as the frequency space variable "s", commonly used in transfer functions.

### Other Languages

- Afrikaans
- العربية
- Asturianu
- বাংলা
- Беларуская
- Беларуская (тарашкевіца)
- Български
- Bosanski
- Català
- Čeština
- Dansk
- Deutsch
- Eesti
- Ελληνικά
- Español
- Esperanto
- Euskara
- فارسی
- Français
- Gaeilge
- Galego
- 한국어
- Հայերեն
- हिन्दी
- Hrvatski
- Bahasa Indonesia
- Íslenska
- Italiano
- עברית
- ქართული
- Latviešu
- Magyar
- Македонски
- മലയാളം
- Монгол
- Nederlands
- 日本語
- Norsk
- Norsk nynorsk
- Piemontèis
- Polski
- Português
- Română
- Русский
- Sicilianu
- Slovenčina
- Slovenščina
- Српски / srpski
- Srpskohrvatski / српскохрватски
- Suomi
- Svenska
- Türkçe
- Українська
- Tiếng Việt
- 粵語
- 中文

### Copyright

- This page is based on the Wikipedia article Siemens (unit); it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA.