Subwavelength-diameter optical fibre

A subwavelength-diameter fibre wraps light around human hair.

A subwavelength-diameter optical fibre (SDF or SDOF) is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts (same as conventional optical fibres) at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part.

Name

There is no general agreement on how these optical elements are to be named; different groups prefer to emphasize different properties of such fibres, sometimes even using different terms. The names in use include subwavelength waveguide,[1] subwavelength optical wire,[2] subwavelength-diameter silica wire,[3] subwavelength diameter fibre taper[4][5] (photonic) wire waveguide,[6][7] photonic wire,[8][9][10] photonic nanowire,[11][12][13] optical nanowires,[14] optical fibre nanowires[15] tapered (optical) fibre,[16][17][18][19] fibre taper,[20] submicron-diameter silica fibre[21][22] ultrathin optical fibres,[23] optical nanofibre,[24] optical microfibres[25] submicron fibre waveguides,[26] micro/nano optical wires (MNOW)

The term waveguide can be applied not only to fibres, but also to other waveguiding structures such as silicon photonic subwavelength waveguides.[27] The term submicron is often synonymous to subwavelength, as the majority of experiments are carried out using light with a wavelength between 0.8 and 1.6 Β΅m.[11] All the names with the prefix nano- are somewhat misleading, since it is usually applied to objects with dimensions on the scale of nanometers (e.g., nanoparticle, nanotechnology). The characteristic behaviour of the SDF appears when the fibre diameter is about half of the wavelength of light. That is why the term subwavelength is the most appropriate for these objects.[original research?]

Manufacturing

An SDF is usually created by tapering a commercial optical fibre. Special pulling machines accomplish the process.

An optical fibre usually consists of a core, a cladding, and a protective coating. Before pulling a fibre, its coating is removed (i.e., the fibre is stripped). The ends of the bare fibre are fixed onto movable "translation" stages on the machine. The middle of the fibre (between the stages) is then heated with a flame or a laser beam; at the same time, the translation stages move in opposite directions. The glass melts and the fibre is elongated, while its diameter decreases.

Using the described method, waists between 1 and 10 nm in length and diameters down to 100 nm are obtained.

Handling

Being extremely thin, an SDF is also extremely fragile. Therefore, an SDF is usually mounted onto a special frame immediately after pulling and is never detached from this frame.

Dust, however, may attach to the surface of an SDF. If significant laser power is coupled into the fibre, the dust particles will scatter light in the evanescent field, heat up, and may thermally destroy the waist. In order to prevent this, SDFs are pulled and used in dust-free environments such as flowboxes or vacuum chambers.

Applications

Applications include sensors.[28] nonlinear optics, fibre couplers, atom trapping and guiding,[29] and.[30] quantum interface for quantum information processing.[31] and all-optical switches.[32]

See also

References

  1. ^ Foster, M. A.; Gaeta, A. L. (2004). "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides". Optics Express. 12 (14): 3137–3143. Bibcode:2004OExpr..12.3137F. doi:10.1364/OPEX.12.003137. PMID 19483834. open access
  2. ^ Jung, Y.; Brambilla, G.; Richardson, D. J. (2008). "Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter". Optics Express. 16 (19): 14661–14667. Bibcode:2008OExpr..1614661J. doi:10.1364/OE.16.014661. PMID 18795003. open access
  3. ^ Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. (2003). "Subwavelength-diameter silica wires for low-loss optical wave guiding" (PDF). Nature. 426 (6968): 816–819. Bibcode:2003Natur.426..816T. doi:10.1038/nature02193. PMID 14685232.
  4. ^ MΓ€gi, E. C.; Fu, L. B.; Nguyen, H. C.; Lamont, M. R.; Yeom, D. I.; Eggleton, B. J. (2007). "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers". Optics Express. 15 (16): 10324–10329. Bibcode:2007OExpr..1510324M. doi:10.1364/OE.15.010324. PMID 19547382. open access
  5. ^ Zhang, L.; Gu, F.; Lou, J.; Yin, X.; Tong, L. (2008). "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film". Optics Express. 16 (17): 13349–13353. Bibcode:2008OExpr..1613349Z. doi:10.1364/OE.16.013349. PMID 18711572. open access
  6. ^ Liang, T. K.; Nunes, L. R.; Sakamoto, T.; Sasagawa, K.; Kawanishi, T.; Tsuchiya, M.; Priem, G. R. A.; Van Thourhout, D.; Dumon, P.; Baets, R.; Tsang, H. K. (2005). "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides". Optics Express. 13 (19): 7298–7303. Bibcode:2005OExpr..13.7298L. doi:10.1364/OPEX.13.007298. hdl:1854/LU-327594. PMID 19498753. open access
  7. ^ Espinola R, Dadap J, Osgood R Jr, McNab S, Vlasov Y (2005). "C-band wavelength conversion in silicon photonic wire waveguides". Optics Express. 13 (11): 4341–4349. Bibcode:2005OExpr..13.4341E. doi:10.1364/OPEX.13.004341. PMID 19495349. open access
  8. ^ LizΓ©, Y. K.; MΓ€gi, E. C.; Ta'Eed, V. G.; Bolger, J. A.; Steinvurzel, P.; Eggleton, B. (2004). "Microstructured optical fiber photonic wires with subwavelength core diameter". Optics Express. 12 (14): 3209–3217. Bibcode:2004OExpr..12.3209L. doi:10.1364/OPEX.12.003209. PMID 19483844. open access
  9. ^ Zheltikov, A. (2005). "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires". Journal of the Optical Society of America B. 22 (5): 1100. Bibcode:2005JOSAB..22.1100Z. doi:10.1364/JOSAB.22.001100. closed access
  10. ^ Konorov, S. O.; Akimov, D. A.; Serebryannikov, E. E.; Ivanov, A. A.; Alfimov, M. V.; Dukel'Skii, K. V.; Khokhlov, A. V.; Shevandin, V. S.; Kondrat'Ev, Y. N.; Zheltikov, A. M. (2005). "High-order modes of photonic wires excited by the Cherenkov emission of solitons". Laser Physics Letters. 2 (5): 258–261. Bibcode:2005LaPhL...2..258K. doi:10.1002/lapl.200410176. closed access
  11. ^ a b Foster, M. A.; Turner, A. C.; Lipson, M.; Gaeta, A. L. (2008). "Nonlinear optics in photonic nanowires". Optics Express. 16 (2): 1300–1320. Bibcode:2008OExpr..16.1300F. doi:10.1364/OE.16.001300. PMID 18542203. open access
  12. ^ Wolchover, N. A.; Luan, F.; George, A. K.; Knight, J. C.; Omenetto, F. G. (2007). "High nonlinearity glass photonic crystal nanowires". Optics Express. 15 (3): 829–833. Bibcode:2007OExpr..15..829W. doi:10.1364/OE.15.000829. PMID 19532307. open access
  13. ^ Tong, L.; Hu, L.; Zhang, J.; Qiu, J.; Yang, Q.; Lou, J.; Shen, Y.; He, J.; Ye, Z. (2006). "Photonic nanowires directly drawn from bulk glasses". Optics Express. 14 (1): 82–87. Bibcode:2006OExpr..14...82T. doi:10.1364/OPEX.14.000082. PMID 19503319. open access
  14. ^ Siviloglou, G. A.; Suntsov, S.; El-Ganainy, R.; Iwanow, R.; Stegeman, G. I.; Christodoulides, D. N.; Morandotti, R.; Modotto, D.; Locatelli, A.; De Angelis, C.; Pozzi, F.; Stanley, C. R.; Sorel, M. (2006). "Enhanced third-order nonlinear effects in optical AlGaAs nanowires". Optics Express. 14 (20): 9377–9384. Bibcode:2006OExpr..14.9377S. doi:10.1364/OE.14.009377. PMID 19529322. open access
  15. ^ "Optical Fibre Nanowires and Related Devices Group". University of Southampton. Archived from the original on 2007-02-20.
  16. ^ Dumais, P.; Gonthier, F.; Lacroix, S.; Bures, J.; Villeneuve, A.; Wigley, P. G. J.; Stegeman, G. I. (1993). "Enhanced self-phase modulation in tapered fibers". Optics Letters. 18 (23): 1996. Bibcode:1993OptL...18.1996D. doi:10.1364/OL.18.001996. PMID 19829470. closed access
  17. ^ Cordeiro, C. M. B.; Wadsworth, W. J.; Birks, T. A.; Russell, P. S. J. (2005). "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser". Optics Letters. 30 (15): 1980–1982. Bibcode:2005OptL...30.1980C. doi:10.1364/OL.30.001980. PMID 16092239. closed access
  18. ^ Dudley, J. M.; Coen, S. (2002). "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers". IEEE Journal of Selected Topics in Quantum Electronics. 8 (3): 651–659. Bibcode:2002IJSTQ...8..651D. doi:10.1109/JSTQE.2002.1016369. closed access
  19. ^ Kolesik, M.; Wright, E. M.; Moloney, J. V. (2004). "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers". Applied Physics B. 79 (3): 293–300. doi:10.1007/s00340-004-1551-1. closed access
  20. ^ Wadsworth, W. J.; Ortigosa-Blanch, A.; Knight, J. C.; Birks, T. A.; Man, T. -P. M.; Russell, P. S. J. (2002). "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source". Journal of the Optical Society of America B. 19 (9): 2148. Bibcode:2002JOSAB..19.2148W. doi:10.1364/JOSAB.19.002148. open access
  21. ^ Shi, L.; Chen, X.; Liu, H.; Chen, Y.; Ye, Z.; Liao, W.; Xia, Y. (2006). "Fabrication of submicron-diameter silica fibers using electric strip heater". Optics Express. 14 (12): 5055–5060. Bibcode:2006OExpr..14.5055S. doi:10.1364/OE.14.005055. PMID 19516667. open access
  22. ^ MΓ€gi, E.; Steinvurzel, P.; Eggleton, B. (2004). "Tapered photonic crystal fibers". Optics Express. 12 (5): 776–784. Bibcode:2004OExpr..12..776M. doi:10.1364/OPEX.12.000776. PMID 19474885. open access
  23. ^ SaguΓ©, G.; Baade, A.; Rauschenbeutel, A. (2008). "Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres". New Journal of Physics. 10 (11): 113008. arXiv:0806.3909. Bibcode:2008NJPh...10k3008S. doi:10.1088/1367-2630/10/11/113008. open access
  24. ^ Nayak, K. P.; Melentiev, P. N.; Morinaga, M.; Kien, F. L.; Balykin, V. I.; Hakuta, K. (2007). "Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence". Optics Express. 15 (9): 5431–5438. Bibcode:2007OExpr..15.5431N. doi:10.1364/OE.15.005431. PMID 19532797. open access
  25. ^ Xu, F.; Horak, P.; Brambilla, G. (2007). "Optical microfiber coil resonator refractometric sensor". Optics Express. 15 (12): 7888–7893. Bibcode:2007OExpr..15.7888X. doi:10.1364/OE.15.007888. PMID 19547115. open access
  26. ^ Leon-Saval, S. G.; Birks, T. A.; Wadsworth, W. J.; St j Russell, P.; Mason, M. W. (2004). "Supercontinuum generation in submicron fibre waveguides". Optics Express. 12 (13): 2864–2869. Bibcode:2004OExpr..12.2864L. doi:10.1364/OPEX.12.002864. PMID 19483801. open access
  27. ^ Koos, C.; Jacome, L.; Poulton, C.; Leuthold, J.; Freude, W. (2007). "Nonlinear silicon-on-insulator waveguides for all-optical signal processing". Optics Express. 15 (10): 5976–5990. Bibcode:2007OExpr..15.5976K. doi:10.1364/OE.15.005976. PMID 19546900. open access
  28. ^ Nayak, K. P.; Melentiev, P. N.; Morinaga, M.; Le Kien, Fam; Balykin, V. I.; Hakuta, K. (2007). "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence". Optics Express. 15 (9): 5431–5438. Bibcode:2007OExpr..15.5431N. doi:10.1364/OE.15.005431. PMID 19532797.
  29. ^ Dawkins, S. T.; Mitsch, R.; Reitz, D.; Vetsch, E.; Rauschenbeutel, A. (2011). "Dispersive Optical Interface Based on Nanofiber-Trapped Atoms". Phys. Rev. Lett. 107 (24): 243601. arXiv:1108.2469. Bibcode:2011PhRvL.107x3601D. doi:10.1103/PhysRevLett.107.243601. PMID 22242999.
  30. ^ Goban, A.; Choi, K. S.; Alton, D. J.; Ding, D.; LacroΓ»te, C.; Pototschnig, M.; Thiele, T.; Stern, N. P.; Kimble, H. J. (2012). "Demonstration of a State-Insensitive, Compensated Nanofiber Trap". Phys. Rev. Lett. 109 (3): 033603. arXiv:1203.5108. Bibcode:2012PhRvL.109c3603G. doi:10.1103/PhysRevLett.109.033603. PMID 22861848.
  31. ^ See, for example, a theoretical analysis with applications to precise quantum nondemolition measurementQi, Xiaodong; Baragiola, Ben Q.; Jessen, Poul S.; Deutsch, Ivan H. (2016). "Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing". Physical Review A. 93 (2): 023817. arXiv:1509.02625. Bibcode:2016PhRvA..93b3817Q. doi:10.1103/PhysRevA.93.023817.
  32. ^ Le Kien, Fam; Rauschenbeutel, A. (2016). "Nanofiber-based all-optical switches". Phys. Rev. A. 93 (1): 013849. arXiv:1604.05782. Bibcode:2016PhRvA..93a3849L. doi:10.1103/PhysRevA.93.013849.

Copyright